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Before we can start looking at permutations and combinations in R, 
we need to install a package, which is a set of tools we can import 
into R.  Luckily, this is very simple:

# R-1-2-6
#Install the gtools package if running for the first time
#(remove the '#' from the next line)
#install.packages('gtools')

#load the gtools package
library(gtools)
# let's remove whatever is in our global environment for a fresh start!
rm(list=ls())

The 'library' method loads the package we installed.  You can also see 
we've cleared our “environment”.  This consists of all the variables, 
arrays,  lists, etc. in the top-right corner of Rstudio.

Remove the '#' before 
install.packages to install 
the package.  Then you 
can put it back.
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For the next part of our code, we need to set a seed.  This is just a value that 
allows you to get the same results each time when you run code that generates 
random numbers.  After that, we define a vector (a  one-dimensional set of 
numbers) of integers from 1 to 9.  You can see it in the global environment.

#set a seed so our results are reproducible (if you run a part of the code with a random sample, 
#make sure you still include this line)
set.seed(83759)

#set up our nine-ball lottery as a vector containing integers 1 through 9, and then assign the total number of balls to 
'n'
lotto = 1:9
n = length(lotto)

We assign the number of 
balls (9) to the variable 
'n'.
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Remember that we can arrange the nine balls in 9! ways.  If we pick 4 balls 
without replacing them, then on our first pick, there are nine possibilities, then 
eight, then seven, then six:

9∗8∗7∗6=
9!
5!

=
n!

(n−r )!
=

362,880
120

=3,024
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We can calculate 9! in R, but we can also express our problem as counting the 
ways we could arrange r=9 objects from n=9.  'permutations' generates a table 
(matrix) containing all the possible arrangements, and the number of possible 
arrangements is just 'nrow', the number of rows in that table.

#how many ways can we arrange the 9 balls?
permlotto = nrow(permutations(n, n, lotto))
permlotto
#notice that this is just nine factorial:
factorial(9)

#how many ways can we arrange the 9 balls?
> permlotto = nrow(permutations(n, n, lotto))
> permlotto
[1] 362880
> #notice that this is just nine factorial:
> factorial(9)
[1] 362880

From now on, console output will be shown in a red-outlined rectangle:
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Just as a demonstration, we could “pick” our lottery numbers by taking a random 
sample without replacement from our nine lottery balls.  This is done using the 
'sample' method. We also assign the length of the pick (4) to the variable 'r'. 

#randomly pick four balls without replacement and assign 
#the number of balls picked to 'r'
pick = sample(lotto, 4, replace = FALSE)
pick
r = length(pick)

#we've picked '6 2 5 1'

> #randomly pick four balls without replacement and assign 
> #the number of balls picked to 'r'
> pick = sample(lotto, 4, replace = FALSE)
> pick
[1] 6 2 5 1
> r = length(pick)
> 
> #we've picked '6 2 5 1'

Now n = 9 and r = 4.
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We'll skip over the calculations of permutations of four (24).  Next, let's use our 
permutations method to calculate the number of possible lottery picks when 
order is important and they are picked without replacement. Again, we get 
3,024.

#how many arrangements of four balls picked without replacement
#can we get?
orderednoreplace = nrow(permutations(n, r, lotto, repeats.allowed = FALSE))
orderednoreplace

#Notice, 3,024 is the result of dividing nine factorial by (9-4) factorial:
factorial(n)/factorial(n-r)

> #how many arrangements of four balls picked without replacement
> #can we get?
> orderednoreplace = nrow(permutations(n, r, lotto, repeats.allowed = FALSE))
> orderednoreplace
[1] 3024
> 
> #Notice, 3,024 is the result of dividing nine factorial by (9-4) factorial:
> factorial(n)/factorial(n-r)
[1] 3024

We're choosing r=4 balls 
without replacement 
from n=9.  To choose 
WITH replacement, set 
repeats.allowed = TRUE
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If order is unimportant, we have to divide the number of possible picks (3,024) 
by  the number of ways we could arrange a given pick of four balls  (4!).  
Remember our combination formula:

(nr)=
n!

r!(n−r )!
=

9!
4!(9−4)!

=
362,880
24∗120

=126
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All we have to change from our permutations code is to use the 'combinations' 
method instead

#now, let's see how many combinations of 4 balls we can pick without replacement
unorderednoreplace = nrow(combinations(n, r, lotto, repeats.allowed = FALSE))
unorderednoreplace

#we can pick 126 combinations of 4 balls without replacement.  Note that we get the same result with our formula:
factorial(n)/(factorial(r)*factorial(n-r))

> #now, let's see how many combinations of 4 balls we can pick without replacement
> unorderednoreplace = nrow(combinations(n, r, lotto, repeats.allowed = FALSE))
> unorderednoreplace
[1] 126
> 
> #we can pick 126 combinations of 4 balls without replacement.  Note that we get the same result with our formula:
> factorial(n)/(factorial(r)*factorial(n-r))
[1] 126

We're choosing r=4 balls 
without replacement 
from n=9 where order is 
unimportant. 
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Remember the more complicated formula we need to use if we're picking with 
replacement when order is unimportant:

(n+r−1)!

r!(n+r−1−r )!
=

(n+r−1)!

r!(n−1)!
=

12!

4!8!
=495
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We simply set 'repeats.allowed = TRUE' and see that we were right!

#finally, lets calculate the number of combinations of 4 balls picked WITH replacement
unorderedreplace = nrow(combinations(n, r, lotto, repeats.allowed = TRUE))
unorderedreplace

#and our formula:
factorial(n+r-1)/(factorial(r)*factorial(n+r-1-r))

> #finally, lets calculate the number of combinations of 4 balls picked WITH replacement
> unorderedreplace = nrow(combinations(n, r, lotto, repeats.allowed = TRUE))
> unorderedreplace
[1] 495
> 
> #and our formula:
> factorial(n+r-1)/(factorial(r)*factorial(n+r-1-r))
[1] 495

We're choosing r=4 balls 
with replacement from 
n=9 where order is 
unimportant. 
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