
Presentation R-1-2-6: Counting

Probability and Statistics:
A Primer for Beginners and Pre-

Beginners

Coding Supplement to 1-2-6
R-1-2-6: Counting

Primary reference: Casella-Berger 2nd Edition

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Setting up our environment

2

Before we can start looking at permutations and combinations in R,
we need to install a package, which is a set of tools we can import
into R. Luckily, this is very simple:

R-1-2-6
#Install the gtools package if running for the first time
#(remove the '#' from the next line)
#install.packages('gtools')

#load the gtools package
library(gtools)
let's remove whatever is in our global environment for a fresh start!
rm(list=ls())

The 'library' method loads the package we installed. You can also see
we've cleared our “environment”. This consists of all the variables,
arrays, lists, etc. in the top-right corner of Rstudio.

Remove the '#' before
install.packages to install
the package. Then you
can put it back.

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Setting up our environment

3

For the next part of our code, we need to set a seed. This is just a value that
allows you to get the same results each time when you run code that generates
random numbers. After that, we define a vector (a one-dimensional set of
numbers) of integers from 1 to 9. You can see it in the global environment.

#set a seed so our results are reproducible (if you run a part of the code with a random sample,
#make sure you still include this line)
set.seed(83759)

#set up our nine-ball lottery as a vector containing integers 1 through 9, and then assign the total number of balls to
'n'
lotto = 1:9
n = length(lotto)

We assign the number of
balls (9) to the variable
'n'.

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Counting where order is important

4

Remember that we can arrange the nine balls in 9! ways. If we pick 4 balls
without replacing them, then on our first pick, there are nine possibilities, then
eight, then seven, then six:

9∗8∗7∗6=
9!
5!

=
n!

(n−r)!
=

362,880
120

=3,024

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Counting where order is important

5

We can calculate 9! in R, but we can also express our problem as counting the
ways we could arrange r=9 objects from n=9. 'permutations' generates a table
(matrix) containing all the possible arrangements, and the number of possible
arrangements is just 'nrow', the number of rows in that table.

#how many ways can we arrange the 9 balls?
permlotto = nrow(permutations(n, n, lotto))
permlotto
#notice that this is just nine factorial:
factorial(9)

#how many ways can we arrange the 9 balls?
> permlotto = nrow(permutations(n, n, lotto))
> permlotto
[1] 362880
> #notice that this is just nine factorial:
> factorial(9)
[1] 362880

From now on, console output will be shown in a red-outlined rectangle:

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Counting where order is important

6

Just as a demonstration, we could “pick” our lottery numbers by taking a random
sample without replacement from our nine lottery balls. This is done using the
'sample' method. We also assign the length of the pick (4) to the variable 'r'.

#randomly pick four balls without replacement and assign
#the number of balls picked to 'r'
pick = sample(lotto, 4, replace = FALSE)
pick
r = length(pick)

#we've picked '6 2 5 1'

> #randomly pick four balls without replacement and assign
> #the number of balls picked to 'r'
> pick = sample(lotto, 4, replace = FALSE)
> pick
[1] 6 2 5 1
> r = length(pick)
>
> #we've picked '6 2 5 1'

Now n = 9 and r = 4.

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

Counting where order is important

7

We'll skip over the calculations of permutations of four (24). Next, let's use our
permutations method to calculate the number of possible lottery picks when
order is important and they are picked without replacement. Again, we get
3,024.

#how many arrangements of four balls picked without replacement
#can we get?
orderednoreplace = nrow(permutations(n, r, lotto, repeats.allowed = FALSE))
orderednoreplace

#Notice, 3,024 is the result of dividing nine factorial by (9-4) factorial:
factorial(n)/factorial(n-r)

> #how many arrangements of four balls picked without replacement
> #can we get?
> orderednoreplace = nrow(permutations(n, r, lotto, repeats.allowed = FALSE))
> orderednoreplace
[1] 3024
>
> #Notice, 3,024 is the result of dividing nine factorial by (9-4) factorial:
> factorial(n)/factorial(n-r)
[1] 3024

We're choosing r=4 balls
without replacement
from n=9. To choose
WITH replacement, set
repeats.allowed = TRUE

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

What if order is unimportant?

8

If order is unimportant, we have to divide the number of possible picks (3,024)
by the number of ways we could arrange a given pick of four balls (4!).
Remember our combination formula:

(nr)=
n!

r!(n−r)!
=

9!
4!(9−4)!

=
362,880
24∗120

=126

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

What if order is unimportant?

9

All we have to change from our permutations code is to use the 'combinations'
method instead

#now, let's see how many combinations of 4 balls we can pick without replacement
unorderednoreplace = nrow(combinations(n, r, lotto, repeats.allowed = FALSE))
unorderednoreplace

#we can pick 126 combinations of 4 balls without replacement. Note that we get the same result with our formula:
factorial(n)/(factorial(r)*factorial(n-r))

> #now, let's see how many combinations of 4 balls we can pick without replacement
> unorderednoreplace = nrow(combinations(n, r, lotto, repeats.allowed = FALSE))
> unorderednoreplace
[1] 126
>
> #we can pick 126 combinations of 4 balls without replacement. Note that we get the same result with our formula:
> factorial(n)/(factorial(r)*factorial(n-r))
[1] 126

We're choosing r=4 balls
without replacement
from n=9 where order is
unimportant.

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

What if order is unimportant and we pick with
replacement?

10

Remember the more complicated formula we need to use if we're picking with
replacement when order is unimportant:

(n+r−1)!

r!(n+r−1−r)!
=

(n+r−1)!

r!(n−1)!
=

12!

4!8!
=495

Garrett OrdnerGarrett Ordner

Presentation R-1-2-6: Counting

What if order is unimportant and we pick with
replacement?

11

We simply set 'repeats.allowed = TRUE' and see that we were right!

#finally, lets calculate the number of combinations of 4 balls picked WITH replacement
unorderedreplace = nrow(combinations(n, r, lotto, repeats.allowed = TRUE))
unorderedreplace

#and our formula:
factorial(n+r-1)/(factorial(r)*factorial(n+r-1-r))

> #finally, lets calculate the number of combinations of 4 balls picked WITH replacement
> unorderedreplace = nrow(combinations(n, r, lotto, repeats.allowed = TRUE))
> unorderedreplace
[1] 495
>
> #and our formula:
> factorial(n+r-1)/(factorial(r)*factorial(n+r-1-r))
[1] 495

We're choosing r=4 balls
with replacement from
n=9 where order is
unimportant.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

